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AN TNITTATL VALUE METHOD FOR TﬂE NUMERICAL TREATMENT OF

THE ORR-SOMMERFELD EQUATION FOR THE CASE
OF PLANE POISEUILLE FLOW

by Philip R. Nachtsheim

Lewis Research Center

SUMMARY

An exact numerical method is presented for the calculation of the eigen-
values in the problem of the stability of plane Poiseuille flow. The method ap-
pears to be rapid and highly accurate and can easily be generalized to solve
more complex stability problems. The method of solution consists of treating
the boundary value problem as an initial value problem. The results obtained
agree closely with the numerical results of Thomas.

INTRODUCTION

The stability of plane Poiseuille flow has been studied by many authors.
Considerable controversy has been generated by the contradictory conclusions
reached. Heisenberg (ref. 1) concluded that plane Poiseuille flow became un-
stable at a sufficiently high Reynolds number, but he did not obtain a minimum
critical Reynolds number. Subsequently, Lin (ref. 2) obtained a minimum criti-
cal Reynolds number of 5300 based on the maximum velocity in the center of the
channel and its half-width. Both Heisenberg and Lin used asymptotic series. A
different method was used by Pekeris (ref. 3), who concluded that the flow is
stable at all Reynolds numbers. The disagreement between the results of Pekeris
and those of Lin led von Neumann to suggest a direct numerical calculation. Ac-
cording to reference 4, calculations were performed in 1950 under the direction
of von Neumann, Pekeris, and Lin by using a method devised by von Neumann. The
results of these calculations were not published. In 1953, however, Thomas
(ref. 4) published the results of his calculations, which indicate that plane
Poiseuille flow becomes unstable at a Reynolds number of 5780. The direct nu-
merical calculations made by Thomas were guite lengthy and, according to refer-
ence 5, the limited amount of work performed required 2 weeks of machine time
on a high-speed electronic calculator.

A problem that besets the direct numerical integration of the disturbance



equation is associated with the large values of the Reynolds number at which in-
stability may be expected. The solution varies rapidly, and fine steps must be
taken. Thomas, who used a finite-difference technique, overcame this difficulty
and reduced the truncation error per step by introducing a new variable that is
a discrete representation of the original stream function.

The present numerical method is based on step-by-step integration of the
disturbance equation; hence, there is no need to introduce a variable defined
only at discrete points. The present method, therefore, can be more easily gen- .
eralized than the finite-difference methods to study stability problems of a
more general nature than the stability of plane Poiseuille flow. A reduction
in the truncation error per step is achieved by employing the special integra-
tion formula of Milne (ref. 6).

This report outlines the steps of the initial value technique (ref. 7) as
applied to the problem of the stability of plane Poiseuille flow and determines
a limited number of eigenvalues for the purpose of comparison with the results
of Thomas.

FORMULATION OF THE PROBLEM
In the case of plane Poiseullle flow between parallel plates at } =0 and

L
equation is obtained from the first-order perturbation of the Navier-Stokes
equation. The disturbance velocities are obtailned from the stream function,
which satisfies the continuity equation identically

— —\2
; = 2L with the velocity distribution U = Umax[?z - (%) }, the Orr-Sommerfeld

V(x,¥7,t) = o(y)explialx - ct)] (1)
from which
5= & - G HlesliE - ) (2)
%
and
7 == I ) ewlia(E - )] (3)
X

(Symbols are defined in appendix A.) The disturbance flow is taken to be peri-
odic in the distance X in the direction of the flow. The positive quantity

o 1is the wave number of a disturbance wave and Er, the real part of E, is the
velocity of propagation of the wave. The imaginary part of ¢ will determine
whether the disturbance will grow (Ei > 0) or decay (Ei < 0) in time. The con-

venient complex notation is used herein. Physical meaning is attached only to
the real part of disturbance quantities. ILet Re = UmaxL/V dencte the Reynolds

number, and let dimensionless variables be introduced by replacing y by vy,
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X by xI, @ by a/L, T by tL/Upax, © by cUpaxs ¥ Dy LUpex¥, and © by
L0ygx®- The Orr-Sommerfeld equation is obtained by eliminating the pressure
from the two momentum equations and has the following form for plane Poiseuille

flow in terms of the dimensionless variables:

" - 2a%9" + a’p = iaRe [C2y - y2 - e)(o" - afp) + 2q| (4)

Solutions of the differential equation for ¢, for given o and Re, can be
made to satisfy the boundary conditions that the disturbance velocities u and
v (and, hence, ® and ') vanish at the boundaries

y =0 ® =9' =0 (5)

only for the proper values (eigenvalues) of c. It is also of interest to de-
termine the minimum critical Reynolds number, the lowest value of Re for
which instability occurs.

Of primary interest with regard to equation (4) are the solutions that are
even functions of y about the line y = 1. ©Since the velocity profile is an
even function of y about the line y = 1, the disturbance can be separated
into even and odd function parts. The former, which has a simpler flow pattern,
usually gives a lower critical Reynolds number; hence, the second boundary con-
dition (eq. (8)) at y = 2 is replaced by a condition at y = 1, namely,

y=1 ¢l =" =0 (7)

INTTTATL: VALUE TECHNIQUE

The approach to the eigenvalue problem for fixed o and Re wused herein
is to find values of ¢ = c, + icy (eigenvalues) for which equation (4) has so-

lutions (eigenfunctions) that satisfy the boundary conditions.

Trial soclutions are obtalined by step-by-step numerical integration of the
differential equation for the assumed initial values and an assumed value of c.
The proper initial values and ¢ are determined by an iterative process that
selects the one solution that satisfies the boundary conditions.

Now equation (4) has four linearly independent solutions, some of which
grow exponentially at a rapid rate. Hence, it is important to include as much
information as possible about the wanted solution in the problem statement.

The preceding is accomplished by starting at y =0 with the proper boundary
values and then integrating forward. Additional information is supplied by
starting at y = 1 with the proper boundary values and then integrating back-
ward. Next it is necessary to perform the process of matching in the middle.

No attempt was made to find an optimum matching point; however, the choice

Ve = 0.5 will tend to equalize the truncation error of the backward and forward



solutions.

For computational purposes the solution is carried out in terms of the
disturbance vorticity amplitude and the stream function amplitude. Instead of
solving the fourth-order equation, a system of two second-order equations is
solved, where s represents the disturbance vorticity amplitude

¢" = s+ ao (8a)
s" = afs + iaRe[(Zy - y2 - c)s + Zqﬂ (8b)

Equations (8) are solved subject to the boundary conditions (egs. (5) and (7)).

For the forward solution the initial values at y =0 are

P =0 (9a)
pf = O (9p)
Sp =P (9¢)
sk = q (9a)

The backward solution is started at y =1 with

op = 1 (102)
¢y =0 (10Dp)
S, = T (10¢)
s = 0 (104)

The condition @b(l) =1 1s a normalizing condition and fixes the size of the

whole solution. Hence, in the forward solution the values p and g cannot
be fixed arbitrarily but must be determined in the iterative process that at-
tempts to match the solutions ¢@p and ¢, at some common point y,. The so-

lution must be continuous, and matching requires at y =y, that

Pr = Py (11a)
Py = Py, (11pb)
sp = 5y (11c)
st = s (114)

If these conditions are satisfied, all the higher derivatives agree, and the
matching is accomplished. ’
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The quantities @f(yc), @%(yc), Sf(yc) and S%(yc) are functions of p, q,
and c¢ and the quantities ¢p(ya), @%(yc), sp(ye), and sé(yc) are functions

of r and c. Successive changes are made in the first estimates of the param-
eters so that equations (11) are ultimately satisfied.

The Newton-Raphson method i1s used to fulfill the conditions imposed by
equations (11). If the chosen values p, g, r, and ¢ produce a soclution that
approximately satisfies equations (11), a better approximation is obtained by
starting with p+ Ap, g+ &g, r+ Ar, and ¢ + Ac instead of p, g, r, and c.
The quantities A4p, Aq, Ar, and Ac are solutions of the equations

Op = Py + Op g% (Pp = Pyp) + 20 g% (Pp = @) + Ar §§ (0p - @)

e g (9p-0y) =0 (12a)

: 5
Qp = P+ AP é% (97 - @) + 4q g% (0p = @) + & 5= (0p - @)

+ae 2 (pp - @) =0 (12b)
d o 3
S N A 5 (sp = 5,) + A 34 (sp - sb) + A = (sf - 5y)
0
+ Ac Se (Sf - S'b) =0 (lZC)
1 T a 1 1 a 1 1 5 t t
sp o= 8 * Op > (sf - sb) + Ag 3q (sf - Sb) *Ar < (sf - sb)
vae 2 (sh-s) =0 (124)
¢ £ b/ =

in which the functions and the partial derivatives that constitute the coeffi-
cients are evaluated at y..

The partial derivatives are obtalned by solving additional initial-value
problems. These eguations are obtained by partial differentiation of the terms
in equations (8). The coefficients of equations (8) are analytic functions of
y and the parameters a, Re, and c. The solutions of equations (8), there-
fore, have the same analytic properties and possess the required partial deriva-
tives.

The quantities Bwf/Bp = @p , and Bsf/ap = sp , for the forvard solution
) 2
satisfy the system of equations



¢ p = Sp,p+ <FOp (13a)
sg’p = azsf’p + iaRe[KBy - y& - c)sf’p + sz,p] (13b)
With the initisl conditions at y =
Prp = 0 (14a)
@%,p =0 (14b)
S%,p =0 (14c)
sp,p = 1 (144)

The quantities Opp/dq = Pp q and Jsp/dq = sg q Tor the forward solution
need not be computed by solving an initial value problem, but they can be ob-
tained as a linear combination of the two previous solutions (@f,sf) and (@f p’
Sf, p‘ since there are only two linearly independent solutions of the dlfferen-
tial equation when @(0) and ®'(0) are fixed at the value zero. Note that the
differential equations (13) are the same as equations (8), and the only differ-
ence between the two sets of integrals (@g,sg) and (@f,P,Sf’p) is the initial
conditions satisfied by each set. The required integrals are given by

br - D1, p
=-——————Z—
P, q 3 (15a)
of - POF g
P == 15b
f,q q ( )
and
Sf - pSf P
- —_— 2P
Sf,q q (163)
st - pst
r _ T i,p
Sf,q - q‘“' (16D)
In particular
Sf:q(o) =0
and
4
sf,q(O) =1
6



The quantities Opg/dc = Pp o and Osp/de = sf o for the forward solution
satisfy the system of equatiouns

" - 2
wf,c - Sf,c T cPf,c (17a)

s = a®s + iaRel}Zy - y2 - ¢)s

f,ec T,c (l7b)

With the initial conditions at y =0

Pr e = 0 (18a)
Pg,c = O (18b)
Sgc =0 (18c)
s} o =0 (18a)

For the backward solution the quantities opp/or = 9p,r and Jsp/dr = Sp, 1

satisfy exactly the same system of equations (egs. (13)) as do 0p,p end sp
except that the initial conditions in this case are at y =1

P,y = 0 (192a)
¢ﬁ,r =0 (19b)
S%,r =0 (19¢e)
Sp,r = 1 (194)

Finally, for the backward solution the quantities Jg/dc = Pp,c and

dsy,/dc = sp,c satisfy exactly the same system of equations (egs. (17)) as do
®f, e and Sf, ¢ except that the initial conditions at y =1 1in this case are

Pp,c = O (20a)
Pp,c = O (20b)
Sp,c = 0 (20c)
sg’c =0 (204)

The quantities a(Pb/ap: a@b/aq, ‘ acPf/ar: a(P'E)/ap; aq)t’)/aq’ acp%/ar, aS'b/ap;

ds,,/9q, Osg/Or, Osf/dp, Osf/dq, and Js}/dr are, of course, zero, since the



variable in the numerator is independent of the variable in the denominator.

Equations (12) then reduce to the forms

Pr = Por
Pp = Py + qu)f,p+ Aq__q‘_f_l_)-[yf(pb,r+ Ac(Qf,C—(pb}c)zo (21a)
' oo + Ap ! +Aqw._p_Ar(P! +Ac(cp' - ot ) =0 (Zlb)
Pp = Py Pr p q b, T f,e ~ Pp,c
Sf - pSf’p
Sp - Sy * 4D seopt avel — g Ar Sp,p ¥ A@(sf,c - Sb,c) =0 (21c)
s% - ps% D
t 1 t —_— 2 t 1 = H -
sp - sl + &p sf’p+ Ja%e] 3 Or Sp, + Ac(sf’C Sb,c) =0 (214)

Hence, there are four complex equations to determine the Tfour complex quantities
Ap, Ag, Lr, and Ac  at each step of the iteration procedure.

Each step of the iteration scheme is carried out by starting with an esti-
mate of p, q, r, and c¢ and then integrating step-by-step the forward system
of equations (egs. (8)) with the initial conditions (egs. (9)) together with the
two perturbation systems of equations (egs. (13) and (17)) with the initial con-
ditions (egs. (14) and (18)), respectively. Then the backward system is inte-
grated (egs. (8)) with the initial conditions (egs. (10)) and the two perturba-

“tion systems, which are equations similar to equations (13) and (17) but with
the initial conditions (egs. (19) and (20), respectively). The forward and
backward solutions are compared at the matching point, and the coefficients in
equations (21) are evaluated. Equations (21) are then solved for Ap, Ag, Ar,
and Ac, and this solution gives an estimate of the increments required for the
next iteration.

Only variations with respect to the real parts of p, g, r, and c¢ need be
obtained by step-by-step integration. Since the solutions of equations (8) are
analytic functions of p, g, r, and c, the real and imaginary parts of the com-
plex derivatives appearing in the coefficients of equations (21) can be ex-
pressed in terms of derivatives with respect to real quantities only.

The differential equations written in real form are displayed in appendix B
along with equations (21); appendix B indicates how the coefficients can be
written in terms of derivatives with respect to real quantities only.

The labor of carrying out the step-by-step integration can be reduced by
the use of special formulas for integrating second-order differential equations
in which the first derivative does not appear explicitly. In addition the
truncation error per step is reduced by the use of such formulas. These inte-
gration formulas evaluate the second derlvative at each step. Thus, correspond-
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ing to equations (8) written in real form there will be four second-derivative
evaluations required; also, corresponding to the two perturbation systems of
equations, equations (13) and (17) written in real form, there will be eight ad-
ditional second-derivative evaluations required. Hence, in advancing the solu-
tion there are 12 second-derivatives to be evaluated at each step. The special
integration formulas for starting and advancing the solution are given in appen-
dix C.

RESULTS AND COMPARTISONS

The procedure outlined previously for finding the eigenvalue c¢ for a
given point in the «,Re-plane was programed for solution by using double-
precision arithmetic (16 significant figures) on the IBM 7094 computer located
at the Lewis Research Center. A Dbrief description of the program is given in
appendix D, and a listing of the program is given in appendix E. The forward
solutions (started at y = O) were matched with the backward solutions (started
at y =1) at y = 0.5. Eigenvalues were calculated at a limited number of
points in the o,Re-diagram, namely, at o =1 and Re = 1600, 2500, 6400, and
10,000 in order to compare the results of the present method with the results
of Thomas.

Before making the comparison, however, it is appropriate to examine the ac-
curacy of the present results and to consider the rate of convergence of the
iterative process that determined the eigenvalues.

The accuracy of the results was examined at the point o = 1 and
Re = 10,000. Since the truncation error per step involved in integrating the
differential equations increases as oRe increases, the results for lower val-
ues of Re should be more accurate than those at Re = 10,000. The accuracy
of the results at this point was established by eéxamining the eigenvalues and
eigenfunctions when the example was rerun at a reduced step size. When the
original solution, obtained for 128 steps, was rerun at 256 steps, the eigenval-
ues and the eigenfunctions obtained agreed to within four decimal places. This
agreement indicates that the results are accurate to at least four decimal
places.

TABLE I. - HISTORY OF CONVERGENCE FOR WAVE NUMBER OF 1, . )
An idea concerning

REYNOLDS NUMBER OF 2500, 128 STEPS the rate of convergence
to an eigenvalue can be
Cr ci Pr Pi Qr ai ry ri formulated from table I
where the history of the
0.3231 |-0.0262|19.8219 |-11.4855|-31.0653 | 507.6370 |-2.9503[0.1142 various iterations is
3231 | -.0280|28.1241|-25.5771| 82.9764|1062.0009 [-2.9495| .1220 disoleved. Th -
.2886| -.0352|14.3404)-20.3758|240.0751| 636.0073 (-2.7970| .1407 1lspLayed. e elgen-
.2879| -.0348|20.2816{-16.8579| 94.8133| 707.6264 |-2.8018{ .1368 values at o =1 and
.2919| -.0295|20.8031|-17.3995| 64.3360| 737.6275|-2.8196]| .1177 Re = 2500 were being
.2973| -.0203|25.9439]-18.1969| 12.9200| 808.5010 [-2.8440| .0829 sought, and the eigen-
.2979| -.0186|24.1864[-17.8535| -2.9052| 808.4881|-2.8466| .0754 1 4 the initial
.3013 | -.0147]|25.2129(-18.1846] -22.8133| 835.5380{-2.8611| .0603 values an € 1lnitila
.3011| -.0144|25.2429|-18.0949|-25.5464 | 834.2570(-2.8604| .0590 values at o = 1 and
.3011| -.0142|25.2891]-18.0835|-26.9706| 834.8310/-2.8607| .0580 Re = 1800 were used as
.3012| -.0142|25.2889|-18.0832|~26.9715| 834.8209 [-2.8607| .0580 imitisl estimates. Tt-

eration was stopped when
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all the values for two consecutive iterations agreed to four decimal places.
Similar runs were made to obtain other eigenvalues; for example, the eigenvalues
at o =1 and Re = 6400 were obtained by

using the eigenvalues and initial wvalues

Reynolds | Method of Thomas | Present method

number, (128 steps) at o =1 and Re = 2500. Convergence
Re cy ey in this case required 18 iterations to
Cr ¢5 achieve four-decimal-place agreement be-

1,800 | 0.3231 | -0.0262 | 0.3231 | -0.0262 1_:ween 1.:wo consecutive runs. .About.25
iterations can be performed in 1 minute.

2, 500 .3011 | -.0142 L3012 | -.0142
The table at the left shows the re-

sults obtained by using the present

10, 000 . 2375 .0037 .2375 .0038 method and the results obtained by

Thomas (ref. 4) for o = 1 and various

Reynolds numbers. As can be seen from

the table, the results differ at most by one unit in the fourth decimal place.

6, 400 . 2569 .0009 . 2569 .0010

Table IT shows the eigenfunctions at o = 1 for Re = 10,000 for a 256-step

solution. The results presented in this table can be compared with results
given in table V of reference 4. In

making this comparison, it must be
remembered that the coordinate y

TABLE II. - EIGENFUNCTIONS FOR WAVE NUMBER OF 1,
used by Thomas ranges from -1 to 1

RE%NOLDS NUMBER OF 10,000 and the center of the channel is at
¥ Present method Method of Thomas y = 0. The coordinate y wused

(256 steps) herein ranges from O to 2, and the

center of the channel is at y = 1.

Pr @y Py ?; Also there is a difference in the
° o o o o definition of the stream function
.0625 1 ,083523 | ~.000321| cmemmn | emmeen used by Thomas and the definition
ig?g -gggzgg -.013405 | —emeoe | meeeee used herein. When these factors are
2500 | la7s7is | Lloosesr| .ivsimn | -.vsese| ~ considered, it cem be seem that

there is good agreement between the

s odoe :-88;2‘;2 R values taken on by the eigenfunction
4375 | 725638 | -.002131 | —m—oo- o reported herein and the values given
.5000 | .785187 | -.001668 | .785190 | -.001662 by Thomas. Although this agreement
5625 | .637814 | -.001266 | comeoe | oe. cannot be seen readily for all the
.6250 | .882240 | -.000923 [ mmecem | eceeen values because of the difference in
-gggg -gigg%g --gggigg By o the increment of the independent
) ) o ) ~-000404 variable y, there are several val-
.8125 | .971250 | -.000227 | ==e-m= | comaoo ues that can be checked directly.
:g;?g :gg;g;; ::888%% R R These values agree with the results
1.0000 |1.000000 | © 1.000000 | © of Thomas shown in table ITI to four

decimal places,

Finally, the value of the mini-
mum critical Reynolds number was obtained. The eigenvalues were obtained in the
vicinity of the minimum value of 5780 reported in reference 4. TFigure 1(a)
shows c: plotted against «a for various values of Re. Interpolation (fig.
1(b)) based on the values given in figure 1l(a) leads to a minimum critical Rey-
nolds number (the lowest value of Re for which instability exists) of 5767 at
o = 1.02. An interpolated value of 5780 at a = 1.026 is given in reference 4.

10
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From the comparisons made previously, it can be seen that the agreement of the
results of this report with those of Thomas is very good.

CONCLUDING REMARKS

The calculations and a comparison of them with the method of Thomas indi-
cate that the method reported herein is rapid and highly accurate. Less than
1 minute of computing time on the TIBM 7094 computer is required to calculate the
eigenvalues at a representative point in the wave number-Reynolds number diagram
if reasonably accurate initial estimates of the elgenvalues are provided. The
method appears capable of being easily generalized to solve more complex stabil-
ity problems. The close agreement of the results presented in this report with
the results of Thomas is gratifying in view of the previous history of contra-
dictory results regarding the stability of plane Poiseullle flow.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, May 19, 1964
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APPENDIX A

SYMBOLS
c phase velocity
I, channel half-spacing
P s(0)
q st(0)
Re Reynolds number
T s(1)
s disturbance vorticity amplitude
t time
U velocity of basic flow
u disturbance velocity parallel to plates
v disturbance velocity normal to plates
X distance parallel to plates
¥y normal distance from lower plate

Ve matching point

o wave number

v kinematic viscosity

0] stream function amplitude

s stream function

Subscripts:

b refers to backwards solution
f refers to forward solution

i refers to imaginary part

max maximum

12



T refers to real part

s denotes partial differentiation

Superscripts:

() dimensional quantity

! denotes differentiation with respect to y

13



APPENDIX B

EQUATTONS IN REAL FORM

The real differential equations are obtained by separating the original
equations into real and imaginary parts. For example, equations (8) written in
real form are as follows:

Py = S, + aZP, (Bla)
Py = 85 + ol (B1b)
5y = azsr - aRe[(Zy - y2 - cp)ey ~ cySp + 2@i] (Ble)
si = als; + aRe[(Zy - y2 - cp)sp + cysg + 2¢£] (B1d)

The perturbation differential equations for variations with respect to the real
part of the initial values for both the forward and backward solutions are of

the same form as equations (Bl).

The perturbation differential equations for the variation with respect to
the eigenvalue c¢, Tor both the forward and backward soluticns are of the fol-

lowing form:

¢;,cr = Sriep T @2¢r,cr (B2a)
@;,cr = %4, cp + a?@i,cr (B2b)
S;:Cr - azsr,cr - mRe[(Zy - ¥8 - cr)si,cr R e Zmi,cr - Si] (B2c)
SE’Cr = azsi,cr + aRe[KZy - y2 - cr)sr,cr *oCi8 e + ZQr,cr - sé] (B24)

The real linear equations for the corrections to the initial conditions,
and the eigenvalue are obtained by separating the original equations into real
and imaginary parts. For example, equation (2la) written in real form leads to

the two real equations

((Pf)r = ((Pb)r + ((Ppr)I‘ Apr - ((Pf’p)l Apl + (@f}q)r Aql‘ - (cpf,q)i AQj_
= (Pp,p), Orp + (@, 7); &es + [(0p,c), = (9p,c),]oer
- [KQf,c)i - (¢b,c)i]Aci =0 (B3a)

14



i,

- (@b,r)i Lry - (ch,r)r Ar; + [wa,c)i - (@b,c)ijﬁcr

[(pe, ), - (op,0) Jaes =0 (B3D
where

q_r(q)f) + ql(cpf [qur+ qlpl] (9r, p [qlpr - qrp1:| ((Pf,p)

(@f ) =
2 2
8 Ay + d3

(B4a

qr(cpf) - ql (Cpf [qI'pr + qlp:L] (CPf p) + I:qlpr - qrpl] (cPf, p)

(@f ), =
PR 2 2
4. + q4

)

)

(B4b)

Since the derivatives with respect to the real quantities are the ones that

are calculated, 1t is necessary to express the real and imaginary parts of the
complex derivatives in terms of derivatives with respect to real quantities.

For example, in the case of Qg y, (@f’p)r = (@f)r 0 and (@f p (Qf) .
> ¥r 1> Py

15



APPENDIX C

INTEGRATTON FORMULAS

The integration 1s performed by using the fifth-order predictor-corrector
method of Milne, which uses the fourth-order Runge-Kutta method to obtain start-

ing values.

Let the system of n equations to be solved be given in the form
1 .
yi = fi(X}yl:YZ: < s ey yn): (1 =12, . . ., n) (Cl)

with the initial conditions

yj_(xo) = yio) yjt_(xo) = 3’{0: (i = 1}2) A | Tl) (CZ>

Let yj x end y{’k be the values of y; and y] at x = x, f1,% be
the second derivative of y; at x = xi, and h De the step size. The special
Runge-Kutta formulas (ref. 8) used are as follows:

ki1 = hfy(%e,¥5) %) : (c3a)

h h h
kis = hfiQSK'+ > YVik t 3 Y%,k t3 kil) (C3b)

1 h
kiz = hfi(Xk * h,yix ¥ hyix + 3 ki2> (C3c)

. o I (ksq + 2k )]
Vi, ktl = Yi,k Yi,k T g \¥il iz/] (€33)
yt = y.‘ + -l:-l l:k + 4k.o + Kk :I (056)
1,kt+1 i,k 6 il iz i3
where fi(Xk>yi,k) is a shorthand notation for fi(xk’yl,k’YZ,k’ e ey yn,k)'

The Milne predictor-corrector formulas (ref. 6) for solving the system (C1)
are

2
n
Pi,ktl = Vi, k * Vi,k-2 - ¥i,k-3+ - (i, x + 2fj k-1 + 53 x-2) (C4a)

2
n
¥i,101 = B4,k - ¥i,k-1* T3 |F1(¥een Py, ke1) + 1085 x + 5 k1] (Cap)

16
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The corrector formula equation (C4b) is applied only once so that only two de-
rivative evaluations are needed for each Milne integration step. The starting

values needed in the predictor formula (eq. (C4a)) are obtained by using equa-
tions (C3).

17
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APPENDIX D

DESCRIPTION OF THE FORTRAN PROGRAM FOR SOLUTION OF THE EIGENVALUE
PROBLEM OF PLANE POISEUILLE FIOW

The numerical procedure outlined previously for solving the eigenvalue
problem was programed for solution on the IBM 7094 in FORTRAN IV. The program
as listed below is available upon request from the author.

The correspondence between FORTRAN symbols used in this program and the
mathematical notation employed previously is shown in the following list:

FORTRAN | Mathematical FORTRAN | Mathematical
symbol symbol symbol symbol

Y1 @ Ds2C sy

Y2 P4 Cl Cp

s1 s cz e

s2 s; DELAL £py.
Y14 @5 Py DELA2 Ap;
Y24 9,0 DELB1 Aq,.
S1A Sps By DELB2 bg5
S2A Si,Pp DELC1 Acy,
pals Dps DELC? Oey
Y2 @50 DELD1 ory
51C Spy Cp DELD2Z Org
sec S15Cp © S1FWD 5.(0)
DY1 ol S2FWD s;(0)
DY2 of DS1FWD 55.(0)
DS1 s} ’ DS2FWD s$(0) )
DS2 sf S1BACK s(1)
DY1A o, oy S2BACK s;(1)
DY24 o}, p, A a
DS1A Sps Py R Re
DS2A si,pp W 2y - y?
DY1C ot ey DDW -2
DY2C ©f,cp X ¥y
DS1C sk, e

18




The following remarks are intended to aid in a study of the program:

(1) Subroutine DAUX is used to evaluate the second derivatives. The vari-
ables Z and DDZ that appear in DAUX are dummy variables.

(2) Subroutine ZMANDZ is used to store the matrix of coefficients that are
formed from functions and partial derivatives evaluated at the matching point.
The solution of the simultaneous linear equations is accomplished by calling
subroutine LSCAUS. A listing of this subroutine is not included herein since
programs that solve simultaneous linear equations are readily available at all
computing establishments. For the purpose of following the logic of subroutine
ZMANDZ, the reader can ignore all the arguments in the call of LSGAUS except EE
and VV. Before the subroutine is called, EE contains the coefficient matrix
and VV contains the "right-hand side." After LSGAUS is called, VV contains the
answers.

(3) Subroutine INTEGR carries out the step-by-step integration with either
the Runge-Kutta method (INDEX = O) or the Milne method, which uses the Runge-
Kutta method to obtain starting values (INDEX = 1).

The program listing is given in appendix E and flow charts of the program
are presented in figures 2 to 4.

19
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APPENDIX E

PROGRAM LISTING

MAIN

EXTERNAL DAUX

DOUBLE PRECISION Y19Y25S19529Y1AsY2A9S1A9S2AsY1CsY2C951CsS2CoDY1
1DY2+DS19DS29DY1AIDYZASDS1AIDS2ASDYLICDY2CsDS1CeDS2CsC19C29TsDTy
ZDELAlyDELAZ’DﬁLBlsDELRZ9DFLC19DFLC29DFLD11DFLDZ!51FWD952FWDQ
2DS1FWD, DSZFWDa‘lBACKoSZBA(K

DOUBLE PRECISION DDT:SMALLE!SMALLN

COMMON C13C23AsRsWsDDWsAAHAR

COMMON SlFWD’SZFWD'DSIFWD’DSZFWD9DELA1’DELAZ’DELBl’DELBZ’DELCl’
1DELC2+sDELD1sDELD2sTsDT

DIMENSION T(12)sDT(12),DDT(12)

EQUIVALENCE (YLeT(11)a(Y2sT12))9(S1sT(3))19s(S2eT(4))s(YLAsT(5) )
1(Y2A0TU6)) o {S1ATIT) ) (S2AsTIB)Y)s(Y1ICsTIO))s(Y2CsT(10))s({S1CsT(11)
2)!(SZC,T(12))!(DY;’DT(l))?(DYZ,DT(Z))9(DSl'DT(3))t(DSZODT(#),O
3IDY1ASDT(5) )9 (DY2ASDT(6))s(DSLADT(7))s(DS2ADT(8)) s (DYLICeDT(9) )
4IDY2CHDT(1IC)Y) s (DSICsDT(11)) s (DS2CeDT(12))

201 FORMATI(1415)
9 READ(65,42 Ol)INDFX;KgITEQAT
202 FORMATI(7F10.0)
READ(59202)HsDFLXPRyXEND ¢ XMATCH
204 FORMAT(1P4D2C.13)

READ(55204)SMALLEsSMALLN

READ(54202)AR

AAZA%%D

AR=A*R

30 READ(54204)S1FWNaS2FWDsDSIFWDsDS2FWDsC19C29sS1BACK»S2BACK

101 FORMAT(THIINDEX=15s4H N=I15,9H ITERAT=15)

21 WRITE(6s2101)INDEXsNsITERAT

102 FORMAT(3H H=1PF14e79s9H DELXPR=1PE14.797H XEND=1PEl4.7s9H XMATCH
1=1PFl447)

WRITE(69102YHsDELXPR ¢ XEND s XMATCH

118 FORMAT(BH SMALLF=1PD22,15,5H SMALLN=1PD22,15)
WRITE(69118)SMALLF sSMALLN
103 FORMATI(3H A=1PFl4e79s4H R=1PE14,7)
WRITE(6£s103)1 AP
104 FOPMATITH S1FWD=1PD224,1548H S2FWD=1PD22,1599H DSIFWD=1PD22,15,9H

1 DS2FWD=1PD22,15)

105 FOPMAT(4H C1=1PN2241545H (C2=1PD22.159s9H S1RACK=1PD22.15s9H S2BA
1CK=1PD22.15)

WRITE(69204)SIFWD»S2FWDsDE1IFWD s DS2FWD

WRITE(69105)1C1sC2931BACKyS2BACK

10 1=1
J=1
49 CONTIMUF

Y1A=,0D0

Y2A=47D0

DY1A=,0D0

DY2A=,NDO

S1A=1,D0

S2A=,0D0

DS1A=,0D0

DS2A=,0DC

Y1C=40NDO

Y2C=4NDN

DY1C=,0D0

DY2C=,ND"

S1C=,4,0DC

$2C=,0DC

DS1C=,0DC

DS2C=,0D0

GO TO(50951)4J



51

106

4
6

3
62
65
61
63

16

58

110
57

28
29

XPRINT=eC

DELXPR = ABS(DELXPR)
H=ABS{H) .
Y1=40D0

Y2=,0D0

DY1=.0DN
DY2=.C0C
S1=S1FwD
$2=82FWD
DS1=DS1FWD
DS2=DS2FWwWD

GO TN &4

J =1

X = XEND
H==-ABS(H)

XPRINT = XEND

DELXPR=-~ABS(DELXPR)

Y1=14D0

Y2=,0DN

DY1=.0D0Q

DY2=.7D0

§1=81BACK

§2=52BACK

DS1=,0D0

DS2=,0D0

FORMAT(110HOX Y1 Y2 DYl DY2 S1 S2 DS1 DS2/ W Y1A Y2A DY1lA DY2A S1A
1 S2A DS1A DS2A/ DDW Y1C Y2C DY1C DY2C S1C S2C DS1C Ds2QC)
WRITE (6+106)

CALL INTFGR (NsHsXs"sToDToDDT s INDEXsDAUX)

GO T0O 14

CALL INTEGR(NsHsX91sTsDTsDDTs INDEXsDAUX)

GO TO (61+60)sJ

XX=X-XPRINT

IFEXX)15914014
FORMAT(F144491P8D14,4,5/(1PE144591P8D1445))
WRITF(69107)XsY19Y2sDY1sNY25519529D51+DS29sWeY1AsY2AsDY1AsDY2A9S1As
152AsDSIASDSZASNDWIY1CsY2CsDY1CsDY2C9»51Cs52CeDS1CeDS2(
XPRINT=XPRINT+DFLXPR

GO TO (63962)9J

XXX = X=XMATCH

IF (XXX) 154516416

XX = XPRINT-X

GO TO 64

XXX = XMATCH=-X

GO TO 65

CONTINUE

CALL ZMANMDZ (1)

IF(11579E7,58

I=1-1
GO TO 49
FORMAT(16HOSUM OF SQUARES=1PD14,7+18H SUM OF EIGEN SQ=1PDl4.7)

WRITE(6+110)Y1,Y2
S1FWD=S1FWD+DELAL
S2FWD=S2FWD+DELAZ2
DS1FWD=DS1FWD+DELB.
DS2FWD=DS2FWD+DELB2

Cl=C1l+DFLC]

C2=C2+DELC2

S1BACK=S1BACK+DFLD]1
S2BACK=S2BACK+DFLD2
WRITE(69104)S1FWDsS2FWDsDSLFWDsDS2FWD
WRITE(691C5)C19C295S1BACKSS2BACK
ITERAT=1TERAT-1
IF(ITERAT)9+9528
IF{Y1-SMALLN)9+9+29
IF(Y2-SMALLE) 949510

FND

21
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SUBROUTINE INTEGR(NsHeXsISETsYsDY sDDY » INDEXsF)
DOUELE PRECISION EsYLLLsYLLsYLsYsDYLsDYsDDYLL sDDYLsDDYsYR»DYR9DDYR
1+C24+C3,4P

DIMENSION YLLL{12)sYLLI{I2)sYL(12)sY(12)sDYLU12)4DY(12)sDDYLLI12)
1DDYL(12)sDDY(12)sYR(12)9sDYR(12)9sDLYR(12)9C2(12)9sC3(12)9P(12)
E=H .
IF(ISFTI6 697

IF{INDEX)9s9s8

ASSIGN 2 T0 X

GO TQ 21

ASSIGN 1 TO K

CALL F{XsYsDDY)

GO TN 10C

GO TN Ks(192939495)

DT 11 I=1sN

P{I}) = Y{I)+(H/2)1#DY(I)+((H*¥H)/8)*DDY ()

CALL F(X+4H/2e9PsC2)

DO 12 1I=1sN

PUIY = YUI)+HHDY (I {11)/24)%C2( 1)

CALL F({X+H sP+C3)

DO 13 I=1,N

YRUI) = Y(I)+H#(DY(I)+(E/66)*(DDY(1)+2%C2(1)))
DYR(I) = DY(I) + (E/64)%(DDY(I)+4e*C2(1)+C3(1))
CALL F(X+HsYRsDDYR)

X = X+H

DD 14 1I=1eN

YLLLET)Y = YLL{I)

YLL(TIY = YL{D)

YL(I) = Y(I)

Y(I) = YR(D)

DYL(I) = DY(I}

DY(I)Y = DYR(I)

DDYLL(IY = DPYL(I)

DBYL(I} = CDYI(I)

DCY(I) = DDYR(I)
RETURN

ASSIGN 3 TO K
GO 70 1

ASSIGN 4 TO X

GO T0 1

ASSIGN 5 T0 K
GO TO 1

DO 15 I=1sN

PlI) = YOI)+YLL(I)=YLLL{T)+((H*H) /4o ) *(5*DDY(1)+2*¥DDYL(1)+54*DDY
ILeIn

CALL F{X+HyD4DDVYP)

DO 16 TI=1,N
YRUET)=2e*¥Y({1)=YLII)+((EXE)/12)%(DDYR(I)+10e*¥DPY(T)+DDYLITY)
CALL F({X+HsYRsDDYR)

DN 17 TI=1eN

DYR(I) = DYL(I) +(E/34)*(DDYR(1)+44%¥DDY(1)+DDYLI(I)}

G0 79 22

END

SUBROUTINE DAUX (XsZ4DDZ)

DOUBLE PRECISION C1sC2+ZsDD2Z

COMMON C19C29A 3P sWsDDWsAASAR

DIMENSIDN Z(12).DDz2(12)

W=2 o % X=X¥#X

DDW=-2 [y

DDZ(1)= AA%Z(1) +2(3)

DDZt2)= AA*Z(2) +Z(4)

DDZ(3)= AA%¥Z(3) —AR®((W-Cl)*Z(4) —C2%Z2(3) -DDW*Z(2))

DDZ (4= AA*Z(4) +AR%((W-C1)*Z(3) +(C2%Z2(4) -DDW¥*Z(1))
DDZ(5)= AA*2(5) +Z(7)

DDZt6)= AA*Z(6) +2(8)

DDZ (7)= AA%*Z(7) —AR*((W-C1l)%Z(8) =C2%Z(7) -DDW*Z(6))

DDZ (8)= AA%Z(8) +AR®({W-Cl)*Z(7) +C2%Z(8) -DDW*2(5))
DDZ(9)= AA*Z(9) +Z(11)

DDZ(10)=AA*Z(10)+2(12)

DDZ (11 )=AA*Z(11)-AR® ((W~C1)%*2(12)-C2%Z2(11)-DDW*2(10)-2(4))
DDZ (12)=AA*Z (12)+AR% ({W-C1)*Z2(11)+C2*Z(12)-DDW¥*7(9)=-21(3))
RETURN

END

i
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SUBRTUTINE Z2MAMDZ (1)

DOUCLE PRFCISINN Y1sY2s519529Y1AsY2A4S1AsS2AsY1CsY2CeS1C9S2CHLY1,
1DY2 9sDS19DS2sCY1IASDY2ASDS1IAIDS2AsDY1CsDY2CoDS1CHS2CoC1l9C25To DTy
2DELAL +DELAZ29CELBL sDELB2sDELCI sDFLC2HsCELD]1 sDELD29S1FWD9S2F WD
3DS1IFWDIDS2FWDLS1BACK 9 S2BACK

DOUELE PRECISION LEFsVV

COMMION CisC23A9R sV DD sAALAR

COMMON S1FWDsS2FWDeDS1FWNGDE2F WD DFLAYL wDFLA2,DELBL1sDELB2sDFLC1
1DELC2sCFLDY1sDILDZsTHDT

DIMENSION T(12)sDT(12)+EF(892),sVVI8)

ECUIVALENCE (Y1aT(11)a(Y2sT(2))s(S1oT{3))1s(S2sT(4))s(YIAST(S))»
1(Y2A9TL6) ) o (S1AsTIT7) s (S2AsTIB) )9 (YICsT(9)) s (Y2CsTI10))9(S1CyTI11)
2)9(S2CsT(12))9(DYL1sDT(1))s(DY2sDT{2))s(DS1sDT(3))s(DS2sDT(4L) )
3(DY1AsDT(5)) s (DY2ASDT(6)) s (DE1AIDT(T)) s (DS2ADT(8))s(DY1CsDT(9))
4(DY2CeDT(12))s(DS1CeDT(11))s(DE2CHDT(12))

IF(T) 529524953

FORWARD 53

Vviily=vl

Vv(2)=Y2

VvVi(2)=DY1

VV(4)=DY2

VVi(5)=51

VV(6)=582

VVi7)=DS1

VV(B8)=DS2

FE(1s1)=Y1A

EE(2s11=Y2A

EF(3+s1)=DY1A

EE(491)=DY2A

EE(5+1)=5S1A

EE(6s1)=S2A

FE(751)=DS1A

FE(Rs1)=DS2A

DENOM=DSIFWD#*24+DS2F WD * %2

Al=DS1FWD/DFENDOM

A2=DS2FWD/DENOM

AA1=(S1FWD*DS1FWD+S2FWD*DS2FWD) /DENAOM

AA2=(S1FWD*DS2FWD=S2FWDXDSIFWD) /DFNIM

EFE(1e3)=AL#YI+A2¥Y2-AATXYIA-AA2*Y2A

EE(293)=A1%Y2-A2%Y1-AAL*Y2A+AA2*Y 1A

EE(392)=A1%DY1+A2#DY2-AALI*DY1A-AA2*DY2A

EE(492)=A1%DY2~A2%DY1~AAL*DY2A+AAZ#DY 1A

EE(Bs3)=AL%S1+AP¥S2-AAI%S1A-AA2RS2A

EE(653)=A1%S2-A2%S1-AA1#S2A+AAZ#S1A

EE(792)=A1#DS1+A2%*DS2-AA1%#DS1A-AA2*DS2A

FF(Rs2)=A1%NS2-A2%¥DS1-AA1*D2A+AAZRDNGIA

EE(1+8)=Y1C

EE(298)=Y2C

EE(2+5)=DY]1C

EE(44+5)=DY2C

EE(545)=51C

EE(695)=52C

TE(7+5)=D51C

EE(8s5)=DS2C

GO TO 56

BACKWARD 52

VV{1)=Y1-VVI(1)

VV(2)= Y2-vVv(2)

VV(3)=DY1-VV(3)

VVI(4)=DY2-VV(4)

VVI5)=51-VVI(5)

23
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100

0 0

56

VV{6)=82-VV(6)
vV(T7)=DS1-VVI(T)
VV(8)=DS2-VvVI(8)
FE(1+5)=EE(195)=~Y1C
EE(2+5)=EE(295)~-Y2C
EE(395)=FEE(345)=-DY1C
EEl495)=EE(495)-DY2C
EE(54+5)=EE(5+5)~51C
EE(695)=EE(695)=S2C
EE(795)=EE(7+5)=-DS1C
EE(8s5)=EF(8+5)=DS2C
EE(1s7)=-Y1A
EE(2+7)==-Y2A
EE(3+7)==DY1A
EE(4497)=-DY2A
EE(597)==5S1A
EE(697)==52A
EE(7+7)=-DS1A
EF{(8,7)=-DS2A

EVEN COLUMNS

DO 100 K=144

DO 100 L=1ls4
EE(2%L~142%¥K)==FE (2% 42%K~-1)
EE(2#L 42%K)= EE(2%#L-192%K-1)
CONTINUE

Y1=40D"

DN 6 L=1s"R
Y1=Y1+VV(L)*VVI(L)
CALL LSGAUSIFEsVVsB8s89,0D0sIYESND)
Y2=40D0

D3 12 L=1,"
YZ2=Y2+VVIL)®VV (L)
DELAl1=VVI(1)
NELA2=VV(2)
DFLR1=VV(3)
DELR2=VVI(4)
DELC1=VVI(5)
DELC2=VVI(6)
DELD1=VVI(T)
DELD2=VVI(8)

G0 TO 56

RETURN

END
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